Analysis of the urban thermal fingerprint of the city of Trento in the Alps

L. Giovannini1, D. Zardi1 and M. de Franceschi1,2
lorenzo.giovannini@ing.unitn.it

1Atmospheric Physics Group, Department of Civil and Environmental Engineering, University of Trento, Trento, Italy

2Major Seminary, Diocese of Bolzano-Bressanone, Bressanone, Italy

Aviemore, 23-27 May 2011
31th International Conference on Alpine Meteorology
Study area: the city of Trento
Study area
Measurement
Sites
Data Analysis
Conclusions and outlook

Measurement sites

Time period:
October 2002 - December 2008

Weather stations used in UHI analysis:

<table>
<thead>
<tr>
<th>NAME</th>
<th>CLASSIF.</th>
<th>m MSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molino Vittoria</td>
<td>urban</td>
<td>224</td>
</tr>
<tr>
<td>Gardolo</td>
<td>rural</td>
<td>197</td>
</tr>
<tr>
<td>Roncafort</td>
<td>rural</td>
<td>194</td>
</tr>
<tr>
<td>Trento South</td>
<td>rural</td>
<td>185</td>
</tr>
<tr>
<td>Cognola</td>
<td>rural</td>
<td>344</td>
</tr>
<tr>
<td>Laste</td>
<td>suburban</td>
<td>312</td>
</tr>
</tbody>
</table>

Wind speed data → Molino Vittoria
Cloud cover data → Mt. Paganella
Measurement sites

Time period:
October 2002 - December 2008

Weather stations used in UHI analysis:

<table>
<thead>
<tr>
<th>NAME</th>
<th>CLASSIF.</th>
<th>m MSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molino Vittoria</td>
<td>urban</td>
<td>224</td>
</tr>
<tr>
<td>Gardolo</td>
<td>rural</td>
<td>197</td>
</tr>
<tr>
<td>Roncafort</td>
<td>rural</td>
<td>194</td>
</tr>
<tr>
<td>Trento South</td>
<td>rural</td>
<td>185</td>
</tr>
<tr>
<td>Cognola</td>
<td>rural</td>
<td>344</td>
</tr>
<tr>
<td>Laste</td>
<td>suburban</td>
<td>312</td>
</tr>
</tbody>
</table>

Wind speed data → Molino Vittoria
Cloud cover data → Mt. Paganella
Measurement sites

Time period:
October 2002 - December 2008

Weather stations used in UHI analysis:

<table>
<thead>
<tr>
<th>NAME</th>
<th>CLASSIF.</th>
<th>m MSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molino Vittoria</td>
<td>urban</td>
<td>224</td>
</tr>
<tr>
<td>Gardolo</td>
<td>rural</td>
<td>197</td>
</tr>
<tr>
<td>Roncafort</td>
<td>rural</td>
<td>194</td>
</tr>
<tr>
<td>Trento South</td>
<td>rural</td>
<td>185</td>
</tr>
<tr>
<td>Cognola</td>
<td>rural</td>
<td>344</td>
</tr>
<tr>
<td>Laste</td>
<td>suburban</td>
<td>312</td>
</tr>
</tbody>
</table>

Wind speed data → Molino Vittoria
Cloud cover data → Mt. Paganella
UHI intensity: average values

<table>
<thead>
<tr>
<th>Study area</th>
<th>Measurement Sites</th>
<th>Data Analysis</th>
<th>Conclusions and outlook</th>
</tr>
</thead>
</table>

UHI INTENSITY [°C]

<table>
<thead>
<tr>
<th>Sites</th>
<th>ALL THE DAY</th>
<th>DAYTIME</th>
<th>NIGHTTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARDOLO</td>
<td>0.76</td>
<td>0.03</td>
<td>1.67</td>
</tr>
<tr>
<td>RONCAFORT</td>
<td>1.07</td>
<td>0.49</td>
<td>1.79</td>
</tr>
<tr>
<td>TRENTO SOUTH</td>
<td>0.58</td>
<td>-0.06</td>
<td>1.37</td>
</tr>
<tr>
<td>COGNOLA</td>
<td>1.48</td>
<td>0.74</td>
<td>2.39</td>
</tr>
<tr>
<td>LASTE</td>
<td>0.65</td>
<td>0.54</td>
<td>0.79</td>
</tr>
</tbody>
</table>

- Average UHI intensity of order 1°C
- UHI is stronger during nighttime
- Laste exhibits a ’quasi-urban’ behavior

Lorenzo Giovannini, Dino Zardi, Massimiliano de Franceschi

Analysis of the urban thermal fingerprint of the city of Trento in the Alps
UHI intensity: diurnal cycle

- **Gardolo**
 - Strong and quite constant UHI intensities at night
 - 'Urban cool island' effect in the central hours of the day

- **Cognola**
 - Flatter diurnal cycle at Laste

- **Laste**
 - Strong and quite constant UHI intensities at night
 - 'Urban cool island' effect in the central hours of the day
 - Flatter diurnal cycle at Laste
Diurnal maximum UHI intensity

Study area
Measurement Sites
Data Analysis
Conclusions and outlook

Lorenzo Giovannini, Dino Zardi, Massimiliano de Franceschi
Analysis of the urban thermal fingerprint of the city of Trento in the Alps
Diurnal maximum UHI intensity

Frequency [%]

Hour

Gardolo Roncafort Trento Sud Cognola Laste
UHI intensity: daytime seasonal variations

- On the valley floor the seasonal variations of UHI intensity are negligible over daytime.

- On the slopes the yearly cycle is controlled by the seasonal variations of the mean lapse rate.
UHI intensity: nighttime seasonal variations

- On the valley floor, nighttime UHI intensity is slightly stronger during 'dry' months.

- On the slopes, the same behavior as during daytime is observed, controlled by the seasonal mean lapse rate.

Lorenzo Giovannini, Dino Zardi, Massimiliano de Franceschi

Analysis of the urban thermal fingerprint of the city of Trento in the Alps
UHI intensity: dependence on cloud cover

- Cloud cover measured in oktas at Mt. Paganella weather station
- Data divided in five cloud cover classes
- Analysis on a hourly basis
 - Influence of cloud cover on the diurnal cycle of the UHI
- Presented here the results for Gardolo, on the valley floor
UHI intensity: dependence on cloud cover

Gardolo: 0-1 Oktas

Study area
Measurement
Sites
Data Analysis
Conclusions and outlook

Analysis of the urban thermal fingerprint of the city of Trento in the Alps

Lorenzo Giovannini, Dino Zardi, Massimiliano de Franceschi
UHI intensity: dependence on cloud cover

Gardolo: 1-3 Oktas
UHI intensity: dependence on cloud cover

Gardolo: 3-5 Oktas

![Box plot showing UHI intensity over hours of the day for Gardolo with 3-5 Oktas cloud cover.](image-url)
Gardolo: 5-7 Oktas

UHI intensity: dependence on cloud cover

Study area
Measurement
Sites
Data Analysis
Conclusions and outlook
UHI intensity: dependence on cloud cover

Gardolo: 7-8 Oktas

![Graph showing UHI intensity vs. hour with data points and error bars]
UHI intensity: dependence on wind speed

- Reference wind speed measured at Molino Vittoria weather station
- Data divided in six wind speed classes
- Analysis on a hourly basis

 Influence of wind speed on the diurnal cycle of the UHI

- Presented here the results for Gardolo, on the valley floor
UHI intensity: dependence on wind speed

Gardolo: 0-1 ms$^{-1}$

![Graph showing UHI intensity over hours for Gardolo with wind speed range 0-1 ms$^{-1}$]
UHI intensity: dependence on wind speed

Gardolo: 1-1.5 ms$^{-1}$
Study area
Measurement Sites
Data Analysis
Conclusions and outlook

UHI intensity: dependence on wind speed

Gardolo: 1.5-2 ms$^{-1}$

Lorenzo Giovannini, Dino Zardi, Massimiliano de Franceschi

Analysis of the urban thermal fingerprint of the city of Trento in the Alps
UHI intensity: dependence on wind speed

Gardolo: 2-3 ms$^{-1}$
UHI intensity: dependence on wind speed

Gardolo: $3-4 \text{ ms}^{-1}$
Study area
Measurement
Sites
Data Analysis
Conclusions and outlook

UHI intensity: dependence on wind speed

Gardolo: 4 ms$^{-1}$
Conclusions and future outlooks

Conclusions

- Quite strong UHI after sunset and at night
- 'Urban cool island' effect in the central hours of the day
- Higher nocturnal UHI intensities during 'dry' months on the valley floor
- Cloud cover is the meteorological factor which most influences UHI intensity in Trento

Outlook

- Investigate the interaction between the urban area and local phenomena with a mesoscale model coupled with an urban parameterization

Poster here at ICAM
THANKS FOR YOUR KIND ATTENTION!