A Case Study of Convection Initiation on 6 August 2007 during COPS

Alan M. Blyth1,2, Lindsay J. Bennett1, Tammy M. Weckwerth3, Ralph R. Burton1,2 and Alan M. Gadian1,2

1School of Earth and Environment, University of Leeds
2National Centre for Atmospheric Science
3National Center for Atmospheric Research, Boulder, USA

Acknowledgements

Bruce Morley and Tracy J. Emerson, NCAR, USA
Strengthening north-westerly flow over Vosges increases convergence with easterly upslope flow.
WRF SIMULATIONS

• V3.1 (Apr 09)

• Initialized with GFS (1°) analyses at 0000 UTC

• Three domains, 2-way nesting: D1=6.3 km; D2=2.1 km; D3=0.7 km

• 121 vertical levels

• Microphysics: Thompson

• Surface layer: Eta similarity based on Monin-Obukhov

• Boundary layer: Mellor-Yamada-Janjic (MYJ)

• Land surface: Noah land surface model

• Convection: Betts-Miller-Janjic on D1, D2/D3 explicit
WRF Outer Domain – Clouds and precipitation

1600 UTC

Surface Reflectivity (dBZ)

Column-integrated cloud mixing ratio
Summary

Initiation of convection over Vosges Mountains
- Deep, moist convective boundary layer develops over eastern slopes of Vosges
- Easterly upslope low-level winds develop
- South-westerly prevailing flow ahead of the approaching cold front progresses eastwards over Vosges with time
- Convergence zone in the lee of the Vosges between the two flows
- Possible presence of a lee vortex in Rhine valley enhances convergence

WRF simulations
- Model simulates front and flow structure reasonably well
- Convection initiates in the right location at the right time
- Clouds are too narrow, individual cores develop along an arc, weaker organisation and shorter lifetime than observed
- Altitude and intensity similar to observed