The importance of friction in mountain wave drag enhancement by parametric resonance

Miguel A. C. Teixeira1, José Luis Argaín2
Pedro M. A. Miranda1

1CGUL, IDL, University of Lisbon, Lisbon, Portugal,
2Department of Physics, University of Algarve, Faro, Portugal
Stratified flow over a 2D mountain

Linear theory and numerical simulations

- Boussinesq approximation
- Linearization ($l_0 h_0 << 1$)
- Non-hydrostatic flow ($l_0 a \neq \infty$)
- Viscous processes represented by Rayleigh damping λ^2

Bell-shaped ridge

$$h = \frac{h_0}{1 + (x/a)^2}$$

Basic Scorer parameter: $l_0 = N/U$

Linear model

$$N^2 = \frac{g}{\theta_0} \frac{d\theta}{dz}$$
Linear model

\[\hat{w}'' + \left(\frac{l^2}{1 - i\lambda / U_k} - k^2 \right) \hat{w} = 0 \]

Taylor-Goldstein equation

- Boundary condition at surface:
- Radiation or decay boundary condition aloft

\[\hat{w}(z = 0) = iU_k \hat{h} \]

Used Scorer parameter profiles:

\[l^2 = l_0^2 \left[1 + \varepsilon \cos(nz + \phi) \right] \]

\[\varepsilon = 0.1 \]

Calculation of gravity wave drag:

\[D = \int_{-\infty}^{+\infty} p(z = 0) \frac{\partial h}{\partial x} \, dx = 2\pi i \int_{-\infty}^{+\infty} k \hat{p}^* (z = 0) \hat{h} \, dk \]
Solution procedure

Expand solution in power series of ε:

$$\hat{w} = \hat{w}_0 + \varepsilon \hat{w}_1 + \varepsilon^2 \hat{w}_2 + \ldots$$

Drag is also power series of ε:

$$D = D_0 + \varepsilon D_1 + \varepsilon^2 D_2 + \ldots$$

It is sufficient to expand D up to first order:

$$\frac{D}{D_0} = 1 + \varepsilon \frac{D_1}{D_0} = 1 + 2\varepsilon \left[\int_0^{+\infty} k' e^{-2k'} m'_R \frac{(4m'^2_R + 4m'^2_I - n'^2) \cos \phi - 4n'm'_I \sin \phi}{(4m'^2_R - 4m'^2_I - n'^2)^2 + 64m'^2_R m'^2_I} dk' \right]$$

$$k' = ka$$

$$n' = n/l_0$$

$$m'_R = m_R/l_0$$

$$m'_I = m_I/l_0$$

Vertical wavenumber of internal gravity waves

Normalized drag D/D_0 is function of: ε, n/l_0, ϕ, $l_0 a$, $\lambda a/U$
Numerical simulations

Use 2D nonlinear nonhydrostatic model called FLEX (Argaín et al. 2009, BLM)

- Finite difference method, with implicit time integration
- Terrain-following grid with 192 x 525 grid points
- Domain of 240 km in horizontal and 44 km in vertical
- Local grid refinement near surface with $\Delta z \sim 32$ m
- Sponges with Rayleigh damping at lateral and top boundaries
- Raymond & Kuo boundary condition at lateral boundaries
- 4th-order spatial filter applied every 3 time steps
- $\Delta t = 2$ s, integration time up to 69 h, typically 17 h.

- Anelastic approximation used
- Inviscid flow (no turbulence closure)
- Free-slip surface boundary condition
- $U=20$ m/s, $N=0.01$ s$^{-1}$, $a=4,10,20$ km, $h_0=10$ m
- $l_0a=2,5,10$, $l_0h_0=5\times10^{-3}$ (strongly linear flow)
Results - Effect of friction

\[l_0a = 5 \quad \varepsilon = 0.1 \]

(a) \(\phi = 0 \)
(b) \(\phi = \pi/2 \)
(c) \(\phi = \pi \)
(d) \(\phi = 3\pi/2 \)
Non-hydrostatic effects (analytical) \[\varepsilon = 0.1 \quad \lambda a / U = 2 \times 10^{-2} \]

(a) \[\phi = 0 \]

(b) \[\phi = \pi / 2 \]

(c) \[\phi = \pi \]

(d) \[\phi = 3 \pi / 2 \]
Non-hydrostatic effects (numerical) $\varepsilon = 0.1$

- \(\phi = 0\)
- \(\phi = \pi/2\)
- \(\phi = \pi\)
- \(\phi = 3\pi/2\)
Pressure perturbation (analytical) \(\varepsilon = 0.1 \quad n/l_0 = 2 \)

Normalized pressure perturbation, \(p/[\rho_0 U^2 l_0 h_0] \) \(\lambda a/U = 2 \times 10^{-2} \)

- Pressure perturbation more symmetric (low drag) when \(\phi = \pi/2 \), and more antisymmetric (high drag) when \(\phi = 3\pi/2 \)
- Effect becomes weaker as \(l_0a \) decreases
Pressure - comparison with numerical results

Normalized pressure perturbation, $p/[\rho_0 U^2 l_0 h_0]$

$\varepsilon = 0.1 \quad n/l_0 = 2 \quad l_0 a = 5$

- Relative magnitude of pressure perturbation correctly predicted
- Some details of the flow different – e.g. absence of downstream maximum in blue curve
Flow structure

Normalized vertical velocity perturbation field, $w/[(h_0/a)U]$

Non-resonant case: $\varepsilon = 0$ $l_0a = 5$

No resonance $\lambda a / U = 2 \times 10^{-2}$

Absorbing layer above $l_0z/\pi=4$
Flow structure

Normalized vertical velocity perturbation field, $w/[(h_0/a)U]$

High-drag state: $\varepsilon = 0.1$, $n/l_0 = 2$, $l_0a = 5$

$\lambda a / U = 2 \times 10^{-2}$

Absorbing layer above $l_0z/\pi = 4$
Flow structure

Normalized vertical velocity perturbation field, $w/[(h_0/a)U]$

Low-drag state:

- $\varepsilon = 0.1$
- $n/l_0 = 2$
- $l_0a = 5$

$\lambda a/U = 2 \times 10^{-2}$

Absorbing layer above $l_0z/\pi = 4$
Effect of turbulence closures

\[\varepsilon = 0.1 \quad l_0 a = 5 \quad \phi = \frac{3\pi}{2} \]

(from Wells and Vosper 2010)

- Smagorinsky-type or K-\(\varepsilon\) turbulence closure
- M-O scaling in surface layer

- Large variation in drag behaviour depending on turbulence closure (and on numerical details in “inviscid” conditions)
Summary

• Mountain wave drag may be significantly enhanced when Scorer parameter oscillates with height
• Gravity wave drag behaviour is reproduced qualitatively in linear framework including nonhydrostatic effects and friction
• Substantial fractional drag enhancement results from resonance when $n/l_0 \approx 2$, even if $\varepsilon = 0.1$ - parametric resonance
• Friction has important impact on drag behaviour, generally moderating resonance
• However, when $\phi = \pi/2$ or $\phi = 3\pi/2$, drag maxima or minima are totally suppressed in inviscid conditions
• Important for numerical models, because both turbulence closures and numerical dissipation introduce ‘friction’
• Non-hydrostatic effects moderate resonance, because of wave dispersion

Paper submitted to QJRMS